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ABSTRACT 

The concept of connectivity play an important role in fuzzy graph theory.In this paper we discuss about cycle 

connectivity, arc connectivity,node connectivity and complement connectivity cyclic cut vertices,cyclic 

bridges and cyclically balanced fuzzy graphs. Connectivity of a complement fuzzy graph is analyzed. Also 

we discussed about connected domination in fuzzy graph using strong arcs. 
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 I.INTRODUCTION TO FUZZYGRAPH 

 Graph theory is proved to be tremendously useful in modeling the essential features of systems with 

finite components. Graphical models are used to represent telephone network,railway network, 

communication problems, traffic network etc. Graph theoretic models can sometimes provide a useful 

structure upon which analytic techniques can be used. A graph is also used to model a relationship between 

a given set of objects. Each object is represented by a vertex and the relationship between them is represented 

by an edge if the relationship is unordered and by means of a directed edge if the objects have an ordered 

relation between them. Relationship among the objects need not always be precisely defined criteria; when 

we think of an imprecise concept,the fuzziness arises. 

 

 The notion of fuzzy graph was introduced by Rosenfeld in year 1975[2].Fuzzy analogues of 

manystructures in crispngraph theory,like bridges,cut nodes,connectedness,trees and cycles etc were 

developed after that. Fuzzy trees were characterized by Sunitha and Vijayakumar [3]. The author have 

characterized fuzzy trees using its unique maximum spanning tree. A sufficient condition for a node to be a 

fuzzy cut node is also established.Center problems in fuzzy graph,blocks in fuzzy graphs and properties of 

self complementary fuzzy graphs were also studied by the same authors. They have obtained a 

characterization for blocks in fuzzy graphs using the concepts of strongest paths [8].The authors have need 

the concepts of strong arcs and strong paths.As far as the applications are concerned(information 

networks,electric circuits, etc.),the reduction of flow between pairs of nodes is more relevant and many 

frequently occur than the total disruption of the theorem or the disconnection of the entire networks.In this 

paper we put forward the conditions under which a fuzzy graph and its complement will be connected. 

 

 In1965,L.A.Zadeh introduced a mathematical frame work to explain the concept to fun certainty in 

real life through the publication of a seminar paper.A fuzzy set is defined mathematically by assigning to 

each possible individual in the universe of discourse a value, representing its grade of membership, which 

corresponds to the degree, to which that individual is similar or compatible with the concept represented by 

the fuzzy set.The fuzzy graph introduced by A. Rosen feld using fuzzy relation, represents the relationship 

between the objects by precisely indicating the level of the relationship between the objects of the given set. 

Also he coined many fuzzy analogous graph theoretic concepts like bridge, cut vertex and tree. Fuzzy graphs 

have many more applications in modeling real time systems where the level of information inherent in the 

system varies with different levels of precision. 

 

 The notion of fuzzy set stems from the observation made by[18] L.A.Zadeh (1965) that more often 

than not, the classes of objects encountered in real physical world do not have precisely defined criterial of 

membership”.This observation emphasis the gap existing between mental representation of reality and usual 

mathematical representation therefore,which are based onbinary logics,precies numbers,differential 
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equations and the like.Classes of objects referred to in [18]K.R. Bhutani introduced  the concept of press 

mordeson introduced fuzzy lines graph. 

 

ORGANIZATION OF THE DESTINATION: 

 Deals with basic definition in fuzzy graph 

 Deals with cycle connectivity in fuzzy graph 

 Deals with complement connectivity in fuzzy graph 

 Deals with node connectivity and arc connectivity in fuzzy graph 

 Deals with strong connected dominating in fuzzy graph 

 Deals with  cyclic bridges in fuzzy graph 

 Deals with  cyclically balanced in fuzzy graph 

 

3.1 Cycle Connectivity in Fuzzy Graphs 

 

Theorem 3.1.1: A fuzzy graph G is a fuzzy tree if and only if CC(G) = 0. 

Proof: If G is an f-tree, then 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 for every pair of nodes u and v in G. Hence, it follows that 

𝐶𝐶(𝐺)=0CC(G)=0. Conversely, suppose that 𝐶𝐶(𝐺)=0CC(G)=0. Therefore, 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 for every 

pair of nodes in G, meaning G has no strong cycles. Consequently, G has no fuzzy cycles, indicating that G 

is an f-tree. 

 

Proposition 3.1.2: The cycle connectivity of a fuzzy cycle G is the strength of G. 

Proof: This follows from the fact that any fuzzy cycle is a strong cycle. 

Theorem 3.1.3: Let G be a complete fuzzy graph with nodes 𝑣1,𝑣2,...,𝑣𝑛v1,v2,...,vn such that 𝜎(𝑣𝑖)=𝑡𝑖σ(vi

)=ti and 𝑡1≤𝑡2≤...≤𝑡𝑛−2≤𝑡𝑛−1≤𝑡𝑛t1≤t2≤...≤tn−2≤tn−1≤tn. Then 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 

 

Proof: Assume the conditions of the theorem. Since any three nodes of G are adjacent, any three nodes form 

a 3-cycle. Additionally, all arcs in a complete fuzzy graph are strong. To find the maximum strength of cycles 

in G, it is sufficient to find the maximum strength of all 3-cycles in G. Consider a 4-cycle 𝐶=𝑎𝑏𝑐𝑑C=abcd in 

G (the case for an n-cycle is similar). Since G is complete, there exist parts of two 3-cycles in C, namely 

𝐶1=𝑎𝑏𝑐C1=abc and 𝐶2=𝑎𝑐𝑑C2=acd. Let the strength 𝑠(𝐶)=𝑡s(C)=t. For all edges (x, y) in C, 

𝜇(𝑥,𝑦)≥𝑡μ(x,y)≥t. In particular, 𝜇(𝑎,𝑏)≥𝑡μ(a,b)≥t and 𝜇(𝑏,𝑐)≥𝑡μ(b,c)≥t. Since G is a complete fuzzy graph, G 

has no δ arcs. Thus, 𝜇(𝑎,𝑐)≥Min{𝜇(𝑎,𝑏),𝜇(𝑏,𝑐)}≥𝑡μ(a,c)≥Min{μ(a,b),μ(b,c)}≥t. That is, 𝜇(𝑎,𝑐)≥𝑡μ(a,c)≥t. 

Suppose 𝜇(𝑎,𝑐)=𝑡μ(a,c)=t, then 𝑠(𝐶1)=𝑠(𝐶2)=𝑠(𝐶)=𝑡s(C1)=s(C2)=s(C)=t. Suppose 𝜇(𝑎,𝑐)>𝑡μ(a,c)>t, then 

since 𝑠(𝐶)=𝑡s(C)=t, at least one of 𝐶1C1 or 𝐶2C2 will have strength equal to t. In either case, 

𝑠(𝐶)=Min{𝑠(𝐶1),𝑠(𝐶2)}s(C)=Min{s(C1),s(C2)}. Thus, the strength of a 4-cycle is nothing but the strength 

of a 3-cycle in G. Among all 3-cycles, the 3-cycle formed by three nodes with maximum node strength will 

have the maximum strength. Thus, the cycle 𝐶=𝑣𝑛−2𝑣𝑛−1𝑣𝑛𝑣𝑛−2C=vn−2vn−1vnvn−2 is a cycle with 

maximum strength in G. Also, the strength of 𝐶=𝑡𝑛−2∧𝑡𝑛−1∧𝑡𝑛=𝑡𝑛−2C=tn−2∧tn−1∧tn=tn−2, where ∧∧ 

stands for the minimum. Thus, 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 

 

III. Connectivity in a Fuzzy Graph 

Definition 2.14: A fuzzy graph 𝐺G is connected if 𝜇∞(𝑢,𝑣)>0μ∞(u,v)>0 for all 𝑢,𝑣∈𝜎∗u,v∈σ∗. An arc 

(𝑥,𝑦)(x,y) is a strong arc if 𝜇(𝑥,𝑦)≥𝜇∞(𝑥,𝑦)μ(x,y)≥μ∞(x,y). A node is an isolated node if 𝜇(𝑥,𝑦)=0μ(x,y)=0 for 

all 𝑦≠𝑥y =x. 

Definition 2.15: 𝐺=(𝜎,𝜇)G=(σ,μ) is a fuzzy cycle if (𝜎∗,𝜇∗)(σ∗,μ∗) is a cycle and there does not exist a unique 

(𝑥,𝑦)∈𝜇∗(x,y)∈μ∗ such that 𝜇(𝑥,𝑦)=min⁡{𝜇(𝑢,𝑣)/(𝑢,𝑣)∈𝜇∗}μ(x,y)=min{μ(u,v)/(u,v)∈μ∗}. 

Definition 2.16: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a fuzzy graph. The complement of 𝐺G is defined as 

𝐺𝑐=(𝜎𝑐,𝜇𝑐)Gc=(σc,μc), where 𝜇𝑐(𝑥,𝑦)=𝜎(𝑥)∧𝜎(𝑦)−𝜇(𝑥,𝑦)μc(x,y)=σ(x)∧σ(y)−μ(x,y) for all 𝑥,𝑦∈𝑆x,y∈S. 

Definition 2.17: The 𝜇μ-complement of 𝐺G is denoted as 𝐺𝜇=(𝜎𝜇,𝜇𝜇)Gμ=(σμ,μμ), where 𝜎𝜇=𝜎σμ=σ and 

𝜇𝜇(𝑢,𝑣)=0μμ(u,v)=0 if 𝜇(𝑢,𝑣)=0μ(u,v)=0 and 𝜇𝜇(𝑢,𝑣)=𝜎(𝑢)∧𝜎(𝑣)−𝜇(𝑢,𝑣)μμ(u,v)=σ(u)∧σ(v)−μ(u,v) if 

𝜇(𝑢,𝑣)>0μ(u,v)>0. 
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Definition 2.18: The busy value of a node 𝑣v in 𝐺G is 𝐷(𝑣)=∑𝜎(𝑣)∧𝜎(𝑣𝑖)D(v)=∑σ(v)∧σ(vi), where 𝑣𝑖vi are 

the neighbors of 𝑣v. The busy value of 𝐺G is 𝐷(𝐺)=∑𝐷(𝑣𝑖)D(G)=∑D(vi), where 𝑣𝑖vi are the nodes of 𝐺G. 

Definition 2.19: A node in 𝐺G is a busy node if 𝜎(𝑣)≤𝑑(𝑣)σ(v)≤d(v); otherwise, it is called a free node. 

Definition 2.20: A node 𝑣v of a fuzzy graph 𝐺G is said to be: 

• A partial free node if it is a free node in both 𝐺G and 𝐺𝜇Gμ. 

• A fully free node if it is free in 𝐺G but busy in 𝐺𝜇Gμ. 

• A partial busy node if it is a busy node in both 𝐺G and 𝐺𝜇Gμ. 

• A fully busy node if it is busy in 𝐺G but free in 𝐺𝜇Gμ. 

Definition 2.21: Two nodes of a fuzzy graph are said to be fuzzy independent if there is no strong arc between 

them. 

Definition 2.22: A subset 𝑆′S′ of 𝑆S is said to be fuzzy independent if any two nodes of 𝑆′S′ are fuzzy 

independent. 

Definition 2.23: A fuzzy graph 𝐺G is said to be fuzzy bipartite if the node set 𝑆S can be partitioned into two 

subsets 𝑆1S1 and 𝑆2S2 such that 𝑆1S1 and 𝑆2S2 are fuzzy independent sets. These sets are called the fuzzy 

bipartition of 𝑆S. 

Definition 2.24: A fuzzy matrix is a matrix whose elements take values from the interval [0,1][0,1]. 

Definition 2.25: A fuzzy graph that has no cycles is called acyclic or a forest. A connected forest is called a 

fuzzy tree. It is also denoted as an f-tree. 

Definition 2.27: Let 𝑋X be a cyclic vertex cut of 𝐺G. The strong weight of 𝑋X is defined as 𝑆𝑐(𝑋)=∑𝜇(𝑥,𝑦)Sc

(X)=∑μ(x,y), where 𝜇(𝑥,𝑦)μ(x,y) is the minimum weight of the strong edges incident on 𝑋X. 

Definition 2.28: The cyclic vertex connectivity of a fuzzy graph 𝐺G, denoted by 𝑘𝑐(𝐺)kc(G), is the minimum 

of the cyclic strong weights of cyclic vertex cuts in 𝐺G. 

Definition 2.29: A cyclic edge cut of a fuzzy graph 𝐺=(𝜎,𝜇)G=(σ,μ) is a set of edges 𝑌⊆𝜇∗Y⊆μ∗ such that 

𝐶𝐶(𝐺−𝑌)<𝐶𝐶(𝐺)CC(G−Y)<CC(G), provided 𝐶𝐶(𝐺)>0CC(G)>0. 𝑘′(𝐺)k′(G) is the minimum of the strong 

edge cuts in 𝐺G. 

Definition 2.30: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a fuzzy graph. The strong weight of a cyclic edge cut 𝑌Y of 𝐺G is 

defined as 𝑆′(𝑌)=∑𝜇(𝑒𝑖)S′(Y)=∑μ(ei), where 𝑒𝑖ei is a strong edge of 𝑌Y. 

Definition 2.31: The cyclic edge connectivity of a fuzzy graph 𝐺G is denoted by the weights of cyclic edge 

cuts in 𝐺G. 

Definition 2.32: A fuzzy graph is cyclically balanced if it has no cyclic fuzzy cut vertices and no cyclic fuzzy 

cut bridges. 

  

III. Connectivity in a Fuzzy Graph 

Cycle Connectivity in Fuzzy Graphs 

Theorem 3.1.1: A fuzzy graph 𝐺G is a fuzzy tree if and only if 𝐶𝐶(𝐺)=0CC(G)=0. 

Proof: If 𝐺G is an f-tree, then 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 for every pair of nodes 𝑢u and 𝑣v in 𝐺G. Hence, it 

follows that 𝐶𝐶(𝐺)=0CC(G)=0. Conversely, suppose that 𝐶𝐶(𝐺)=0CC(G)=0. Hence, 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 

for every pair of nodes in 𝐺G. That means 𝐺G has no strong cycles. Therefore, 𝐺G has no fuzzy cycles, and 

thus it follows that 𝐺G is an f-tree. 

Proposition 3.1.2: The cycle connectivity of a fuzzy cycle 𝐺G is the strength of 𝐺G. 

Proof: This follows from the fact that any fuzzy cycle is a strong cycle. 

Theorem 3.1.3: Let 𝐺G be a complete fuzzy graph with nodes 𝑣1,𝑣2,...,𝑣𝑛v1,v2,...,vn such that 𝜎(𝑣𝑖)=𝑡𝑖σ(vi

)=ti and 𝑡1≤𝑡2≤...≤𝑡𝑛−2≤𝑡𝑛−1≤𝑡𝑛t1≤t2≤...≤tn−2≤tn−1≤tn. Then 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 

Proof: Assume the conditions of the theorem. Since any three nodes of 𝐺G are adjacent, any three nodes are 

in a 3-cycle. Also, all arcs in a complete fuzzy graph are strong. Thus, to find the maximum strength of cycles 

in 𝐺G, it is sufficient to find the maximum strength of all 3-cycles in 𝐺G. Consider a 4-cycle 

𝐶=𝑎𝑏𝑐𝑑𝑎C=abcda in 𝐺G (the case of an n-cycle is similar). Since 𝐺G is complete, there exist parts of two 3-

cycles in 𝐶C, namely 𝐶1=𝑎𝑏𝑐𝑎C1=abca and 𝐶2=𝑎𝑐𝑑𝑎C2=acda. Let the strength 𝑠(𝐶)=𝑡s(C)=t. For all edges 

(𝑥,𝑦)(x,y) in 𝐶C, 𝜇(𝑥,𝑦)≥𝑡μ(x,y)≥t. In particular, 𝜇(𝑎,𝑏)≥𝑡μ(a,b)≥t and 𝜇(𝑏,𝑐)≥𝑡μ(b,c)≥t. Since 𝐺G is a 

complete fuzzy graph, 𝐺G has no δ arcs. Thus, 𝜇(𝑎,𝑐)≥Min{𝜇(𝑎,𝑏),𝜇(𝑏,𝑐)}≥𝑡μ(a,c)≥Min{μ(a,b),μ(b,c)}≥t. 

That is, 𝜇(𝑎,𝑐)≥𝑡μ(a,c)≥t. Suppose 𝜇(𝑎,𝑐)=𝑡μ(a,c)=t, then 𝑠(𝐶1)=𝑠(𝐶2)=𝑠(𝐶)=𝑡s(C1)=s(C2)=s(C)=t. Suppose 

𝜇(𝑎,𝑐)>𝑡μ(a,c)>t, then since 𝑠(𝐶)=𝑡s(C)=t, at least one of 𝐶1C1 or 𝐶2C2 will have strength equal to 𝑡t. In 
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either case, 𝑠(𝐶)=Min{𝑠(𝐶1),𝑠(𝐶2)}s(C)=Min{s(C1),s(C2)}. Thus, the strength of a 4-cycle is nothing but 

the strength of a 3-cycle in 𝐺G. Among all 3-cycles, the 3-cycle formed by three nodes with maximum node 

strength will have the maximum strength. Thus, the cycle 𝐶=𝑣𝑛−2𝑣𝑛−1𝑣𝑛𝑣𝑛−2C=vn−2vn−1vnvn−2 is a 

cycle with maximum strength in 𝐺G. Also, the strength of 𝐶C is 𝑡𝑛−2∧𝑡𝑛−1∧𝑡𝑛=𝑡𝑛−2tn−2∧tn−1∧tn=tn−2, 

where ∧∧ stands for the minimum. Thus, 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 

Proposition 3.1.4: In a fuzzy graph, if the arc (𝑢,𝑣)(u,v) is a cyclic bridge, then both 𝑢u and 𝑣v are cyclic cut 

nodes. 

Proof: Let 𝐺(𝜎,𝜇)G(σ,μ) be a fuzzy graph and (𝑢,𝑣)(u,v) be a cyclic bridge in 𝐺G. Then 

𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−(u,v))<CC(G). Hence 

𝐶𝐶(𝐺−𝑢)≤𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−u)≤CC(G−(u,v))<CC(G) and 

𝐶𝐶(𝐺−𝑣)≤𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−v)≤CC(G−(u,v))<CC(G). Thus, 𝑢u and 𝑣v are cyclic cut nodes. 

Proposition 3.1.5: Let 𝐺G be a fuzzy graph such that 𝐺∗G∗ is a cycle. Then, 

• 𝐺G has no cyclic cut nodes or cyclic bridges if 𝐺G is a fuzzy tree. 

• All arcs in 𝐺G are cyclic bridges and all nodes in 𝐺G are cyclic cut nodes if 𝐺G is a strong cycle. 

Proof: This follows from the fact that a fuzzy tree has no strong cycles. If 𝐺G is a strong cycle, then 

𝐶𝐶(𝐺)=CC(G)= the strength of 𝐺G. The removal of any arc or node will reduce its cycle connectivity to 0. 

Theorem 3.1.6: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a complete fuzzy graph with ∣𝜎∗∣≥4∣σ∗∣≥4. Let 𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1

,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1≤c2≤...≤cn. Then 𝐺G has a 

cyclic cut node (or cyclic bridge) if and only if 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. Further, there exist three cyclic cut 

nodes (or cyclic bridges) in a complete fuzzy graph (if they exist). 

Proof: Let 𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1

≤c2≤...≤cn. Suppose that 𝐺G has a cyclic cut node 𝑢u. Then 𝐶𝐶(𝐺−𝑢)<𝐶𝐶(𝐺)CC(G−u)<CC(G). That is, 𝑢u 

belongs to a unique cycle 𝐶C with 𝛼=α= the strength of 𝐶C greater than the strength of any other cycle 𝐶′C′ 

in 𝐺G. Since 𝑐1≤𝑐2≤...≤𝑐𝑛c1≤c2≤...≤cn, it follows that the strength of the cycle 𝑣𝑛−2𝑣𝑛−1𝑣𝑛vn−2vn−1vn is 

𝛼α. Hence 𝑢∈{𝑣𝑛−2,𝑣𝑛−1,𝑣𝑛}u∈{vn−2,vn−1,vn}...(1). To prove 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2, suppose not. That 

is, 𝑐𝑛−3=𝑐𝑛−2cn−3=cn−2. Then 𝐶1=𝑣𝑛𝑣𝑛−1𝑣𝑛−2C1=vnvn−1vn−2 and 𝐶2=𝑣𝑛𝑣𝑛−1𝑣𝑛−3C2=vnvn−1vn−3 

have the same strength, and hence the removal of 𝑣𝑛−2,𝑣𝑛−1,vn−2,vn−1, or 𝑣𝑛vn will not reduce 

𝐶𝐶(𝐺)CC(G), which is a contradiction to (1). Hence, 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. Conversely, suppose that 

𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. To prove 𝐺G has a cyclic cut node. Since 𝑐𝑛≥𝑐𝑛−1≥𝑐𝑛−2cn≥cn−1≥cn−2 and 

𝑐𝑛−2>𝑐𝑛−3cn−2>cn−3, all cycles of 𝐺G have strength less than that of the strength of 𝑣𝑛𝑣𝑛−1𝑣𝑛−2vnvn−1

vn−2. Hence, the deletion of 𝑣𝑛,𝑣𝑛−1,vn,vn−1, or 𝑣𝑛−2vn−2 will reduce the cycle connectivity of 𝐺G. Hence, 

𝑣𝑛,𝑣𝑛−1,vn,vn−1, and 𝑣𝑛−2vn−2 are cyclic cut nodes of 𝐺G. 

Theorem 3.1.7: For a complete fuzzy graph 𝐺G, 𝑘𝑐(𝐺)≤𝑘(𝐺)kc(G)≤k(G). 

Proof: Given a complete fuzzy graph 𝐺G with vertices 𝑣1,𝑣2,...,𝑣𝑛v1,v2,...,vn such that 

𝑑𝑠(𝑣1)≤𝑑𝑠(𝑣2)≤...≤𝑑𝑠(𝑣𝑛)ds(v1)≤ds(v2)≤...≤ds(vn). Let 𝑣1v1 be a vertex such that 𝑑𝑠(𝑣1)=𝛿𝑠(𝐺)ds(v1)=δs

(G). 

Case I: If 𝑣1v1 is a cyclic cut vertex. Here, 𝑉={𝑣1}V={v1} is a cyclic cut set of 𝐺G. Therefore, 

𝑆𝑐(𝑉)=min⁡{𝜇(𝑣1,𝑣𝑖)}Sc(V)=min{μ(v1,vi)} for 𝑖={2,...,𝑛}≤∑𝜇(𝑣1,𝑣𝑖)=𝛿𝑠(𝐺)i={2,...,n}≤∑μ(v1,vi)=δs(G). 

Now, since 𝑘𝑐(𝐺)=min⁡{𝑆𝑐(𝑉)},kc(G)=min{Sc(V)}, where 𝑉V is a cyclic cut of 𝐺G, we have 

𝑘𝑐(𝐺)≤𝑆𝑐(𝑉)≤𝛿𝑠(𝐺)=𝑘(𝐺)kc(G)≤Sc(V)≤δs(G)=k(G). 

Case II: If 𝑣1v1 is not a cyclic cut vertex. Let 𝐹={𝑢1,𝑢2,...,𝑢𝑡}F={u1,u2,...,ut} be a cyclic cut set such that 

𝑆𝑐(𝐹)=𝑘𝑐(𝐺)Sc(F)=kc(G). Now, 𝑘𝑐(𝐺)=𝑆𝑐(𝐹)kc(G)=Sc(F) 

=∑min⁡{𝜇(𝑢𝑖,𝑢𝑗)},∀𝑢𝑖,𝑢𝑗∈𝜎∗ for 𝑗≠𝑖,𝑗=1,2,...,𝑛=∑min{μ(ui,uj)},∀ui,uj∈σ∗ for j =i,j=1,2,...,n 

≤𝑑𝑠(𝑣1)≤ds(v1) =𝛿𝑠(𝐺)=δs(G) =𝑘(𝐺)=k(G) 

Corollary 3.1.8: A vertex in a fuzzy graph is a cyclic cut vertex if and only if it is a common vertex of all 

strong cycles with maximum strength. 

Proof: Let 𝐺G be a fuzzy graph. Let 𝑤w be a cyclic cut vertex of 𝐺G. Then 

𝐶𝐶(𝐺−𝑤)<𝐶𝐶(𝐺)CC(G−w)<CC(G), i.e., 

max⁡{𝑆(𝐶), where 𝐶 is a strong cycle in 𝐺−𝑤}<max⁡{𝑠(𝐶′), where 𝐶′ is a strong cycle in 𝐺}max{S(C), 

where C is a strong cycle in G−w}<max{s(C′), where C′ is a strong cycle in G}. Therefore, all strong cycles 

in 𝐺G with maximum strength are removed by the deletion of 𝑤w. Hence, 𝑤w is a common vertex of all 
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strong cycles with maximum strength. This results in the reduction of the cycle connectivity of 𝐺G. Thus, 

𝑤w is a cyclic cut vertex of 𝐺G. 

Theorem 3.1.9 

Theorem 3.1.9: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a fuzzy graph. Then no cyclic cut vertex is a fuzzy end vertex of 𝐺G. 

Proof: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a fuzzy graph. Let 𝑤w be a cyclic cut vertex of 𝐺G. Then 𝑤w lies on a strong 

cycle with maximum strength in 𝐺G. Clearly, 𝑤w has at least two strong neighbors in 𝐺G. Hence, 𝑤w cannot 

be a fuzzy end vertex of 𝐺G. 

Conversely, if 𝑤w is a fuzzy end vertex of 𝐺G with ∣𝑁𝑠(𝑤)∣=1∣Ns(w)∣=1, where 𝑁𝑠(𝑤)Ns(w) is the 

neighboring set of 𝑤w, then 𝑤w cannot lie on a strong cycle in 𝐺G. This implies that 𝑤w is not a cyclic cut 

vertex of the fuzzy graph 𝐺G. 

Theorem 3.1.10 

Theorem 3.1.10: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a complete fuzzy graph with ∣𝜎∗∣≥4∣σ∗∣≥4. Suppose 

𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1≤c2≤...≤cn. 

Then 𝐺G is cyclically balanced if and only if 𝑐𝑛−3=𝑐𝑛−2cn−3=cn−2. 

Proof: Let 𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1

≤c2≤...≤cn. Suppose 𝐺G is cyclically balanced. To prove that 𝑐𝑛−3=𝑐𝑛−2cn−3=cn−2, assume the contrary, 

that 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. Since 𝑐𝑛−2≤𝑐𝑛−1≤𝑐𝑛cn−2≤cn−1≤cn and 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2, all cycles of 

𝐺G have strength less than the strength of the cycle 𝑣𝑛𝑣𝑛−1𝑣𝑛−2𝑣𝑛vnvn−1vn−2vn. Hence, the deletion of 

any of the three vertices 𝑣𝑛vn, 𝑣𝑛−1vn−1, or 𝑣𝑛−2vn−2 reduces the cycle connectivity of 𝐺G. Therefore, 

𝑣𝑛vn, 𝑣𝑛−1vn−1, and 𝑣𝑛−2vn−2 are cyclic cut vertices of 𝐺G, which contradicts the fact that 𝐺G is cyclically 

balanced. 

Conversely, suppose that 𝑐𝑛−3=𝑐𝑛−2cn−3=cn−2. Then the cycles 𝐶1=𝑣𝑛𝑣𝑛−1𝑣𝑛−2𝑣𝑛C1=vnvn−1vn−2vn 

and 𝐶2=𝑣𝑛𝑣𝑛−1𝑣𝑛−3𝑣𝑛C2=vnvn−1vn−3vn have the same strength, and hence the removal of 𝑣𝑛vn, 

𝑣𝑛−1vn−1, or 𝑣𝑛−2vn−2 will not reduce the cyclic connectivity of 𝐺G. That is, there does not exist any cyclic 

fuzzy cut vertex in 𝐺G. Hence, the fuzzy graph 𝐺=(𝜎,𝜇)G=(σ,μ) is cyclically balanced. 

 

III. Connectivity in a Fuzzy Graph 

Cycle Connectivity in Fuzzy Graphs 

Theorem 3.1.1: A fuzzy graph 𝐺G is a fuzzy tree if and only if 𝐶𝐶(𝐺)=0CC(G)=0. 

Proof: If 𝐺G is an f-tree, then 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 for every pair of nodes 𝑢u and 𝑣v in 𝐺G. Hence, it 

follows that 𝐶𝐶(𝐺)=0CC(G)=0. Conversely, suppose that 𝐶𝐶(𝐺)=0CC(G)=0. Hence, 𝐶𝐺(𝑢,𝑣)=0CG(u,v)=0 

for every pair of nodes in 𝐺G. That means 𝐺G has no strong cycles. Therefore, 𝐺G has no fuzzy cycles, and 

thus it follows that 𝐺G is an f-tree. 

Proposition 3.1.2: The cycle connectivity of a fuzzy cycle 𝐺G is the strength of 𝐺G. 

Proof: This follows from the fact that any fuzzy cycle is a strong cycle. 

Theorem 3.1.3: Let 𝐺G be a complete fuzzy graph with nodes 𝑣1,𝑣2,...,𝑣𝑛v1,v2,...,vn such that 𝜎(𝑣𝑖)=𝑡𝑖σ(vi

)=ti and 𝑡1≤𝑡2≤...≤𝑡𝑛−2≤𝑡𝑛−1≤𝑡𝑛t1≤t2≤...≤tn−2≤tn−1≤tn. Then 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 

Proof: Assume the conditions of the theorem. Since any three nodes of 𝐺G are adjacent, any three nodes are 

in a 3-cycle. Also, all arcs in a complete fuzzy graph are strong. Thus, to find the maximum strength of cycles 

in 𝐺G, it is sufficient to find the maximum strength of all 3-cycles in 𝐺G. Consider a 4-cycle 𝐶=𝑎𝑏𝑐𝑑C=abcd 

in 𝐺G (the case of an n-cycle is similar). Since 𝐺G is complete, there exist parts of two 3-cycles in 𝐶C, namely 

𝐶1=𝑎𝑏𝑐𝑎C1=abca and 𝐶2=𝑎𝑐𝑑𝑎C2=acda. Let the strength 𝑠(𝐶)=𝑡s(C)=t. For all edges (𝑥,𝑦)(x,y) in 𝐶C, 

𝜇(𝑥,𝑦)≥𝑡μ(x,y)≥t. In particular, 𝜇(𝑎,𝑏)≥𝑡μ(a,b)≥t and 𝜇(𝑏,𝑐)≥𝑡μ(b,c)≥t. Since 𝐺G is a complete fuzzy graph, 

𝐺G has no δ arcs. Thus, 𝜇(𝑎,𝑐)≥Min{𝜇(𝑎,𝑏),𝜇(𝑏,𝑐)}≥𝑡μ(a,c)≥Min{μ(a,b),μ(b,c)}≥t. That is, 𝜇(𝑎,𝑐)≥𝑡μ(a,c)≥t. 

Suppose 𝜇(𝑎,𝑐)=𝑡μ(a,c)=t, then 𝑠(𝐶1)=𝑠(𝐶2)=𝑠(𝐶)=𝑡s(C1)=s(C2)=s(C)=t. Suppose 𝜇(𝑎,𝑐)>𝑡μ(a,c)>t, then 

since 𝑠(𝐶)=𝑡s(C)=t, at least one of 𝐶1C1 or 𝐶2C2 will have strength equal to 𝑡t. In either case, s(C) = 

\text{Min} \{ s(C_1), s(C_2) \}. Thus, the strength of a 4-cycle is nothing but the strength of a 3-cycle in \( 

G. Among all 3-cycles, the 3-cycle formed by three nodes with maximum node strength will have the 

maximum strength. Thus, the cycle 𝐶=𝑣𝑛−2𝑣𝑛−1𝑣𝑛𝑣𝑛−2C=vn−2vn−1vnvn−2 is a cycle with maximum 

strength in 𝐺G. Also, the strength of 𝐶C is 𝑡𝑛−2∧𝑡𝑛−1∧𝑡𝑛=𝑡𝑛−2tn−2∧tn−1∧tn=tn−2, where ∧∧ stands for 

the minimum. Thus, 𝐶𝐶(𝐺)=𝑡𝑛−2CC(G)=tn−2. 
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Proposition 3.1.4: In a fuzzy graph, if the arc (𝑢,𝑣)(u,v) is a cyclic bridge, then both 𝑢u and 𝑣v are cyclic cut 

nodes. 

Proof: Let 𝐺(𝜎,𝜇)G(σ,μ) be a fuzzy graph and (𝑢,𝑣)(u,v) be a cyclic bridge in 𝐺G. Then 

𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−(u,v))<CC(G). Hence 

𝐶𝐶(𝐺−𝑢)≤𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−u)≤CC(G−(u,v))<CC(G) and 

𝐶𝐶(𝐺−𝑣)≤𝐶𝐶(𝐺−(𝑢,𝑣))<𝐶𝐶(𝐺)CC(G−v)≤CC(G−(u,v))<CC(G). Thus, 𝑢u and 𝑣v are cyclic cut nodes. 

Proposition 3.1.5: Let 𝐺G be a fuzzy graph such that 𝐺∗G∗ is a cycle. Then, 

• 𝐺G has no cyclic cut nodes or cyclic bridges if 𝐺G is a fuzzy tree. 

• All arcs in 𝐺G are cyclic bridges and all nodes in 𝐺G are cyclic cut nodes if 𝐺G is a strong cycle. 

Proof: This follows from the fact that a fuzzy tree has no strong cycles. If 𝐺G is a strong cycle, then 

𝐶𝐶(𝐺)=CC(G)= the strength of 𝐺G. The removal of any arc or node will reduce its cycle connectivity to 0. 

Theorem 3.1.6: Let 𝐺=(𝜎,𝜇)G=(σ,μ) be a complete fuzzy graph with ∣𝜎∗∣≥4∣σ∗∣≥4. Let 𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1

,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1≤c2≤...≤cn. Then 𝐺G has a 

cyclic cut node (or cyclic bridge) if and only if 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. Further, there exist three cyclic cut 

nodes (or cyclic bridges) in a complete fuzzy graph (if they exist). 

Proof: Let 𝑣1,𝑣2,...,𝑣𝑛∈𝜎∗v1,v2,...,vn∈σ∗ and 𝜎(𝑣𝑖)=𝑐𝑖σ(vi)=ci for 𝑖=1,2,...,𝑛i=1,2,...,n and 𝑐1≤𝑐2≤...≤𝑐𝑛c1

≤c2≤...≤cn. Suppose that 𝐺G has a cyclic cut node 𝑢u. Then 𝐶𝐶(𝐺−𝑢)<𝐶𝐶(𝐺)CC(G−u)<CC(G). That is, 𝑢u 

belongs to a unique cycle 𝐶C with 𝛼=α= the strength of 𝐶C greater than the strength of any other cycle 𝐶′C′ 

in 𝐺G. Since 𝑐1≤𝑐2≤...≤𝑐𝑛c1≤c2≤...≤cn, it follows that the strength of the cycle 𝑣𝑛−2𝑣𝑛−1𝑣𝑛vn−2vn−1vn is 

𝛼α. Hence 𝑢∈{𝑣𝑛−2,𝑣𝑛−1,𝑣𝑛}u∈{vn−2,vn−1,vn}...(1). To prove 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2, suppose not. That 

is, 𝑐𝑛−3=𝑐𝑛−2cn−3=cn−2. Then 𝐶1=𝑣𝑛𝑣𝑛−1𝑣𝑛−2C1=vnvn−1vn−2 and 𝐶2=𝑣𝑛𝑣𝑛−1𝑣𝑛−3C2=vnvn−1vn−3 

have the same strength, and hence the removal of 𝑣𝑛−2,𝑣𝑛−1,vn−2,vn−1, or 𝑣𝑛vn will not reduce 

𝐶𝐶(𝐺)CC(G), which is a contradiction to (1). Hence, 𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. Conversely, suppose that 

𝑐𝑛−3<𝑐𝑛−2cn−3<cn−2. To prove 𝐺G has a cyclic cut node. Since 𝑐𝑛≥𝑐𝑛−1≥𝑐𝑛−2cn≥cn−1≥cn−2 and 

𝑐𝑛−2>𝑐𝑛−3cn−2>cn−3, all cycles of 𝐺G have strength less than that of the strength of 𝑣𝑛𝑣𝑛−1𝑣𝑛−2vnvn−1

vn−2. Hence, the deletion of 𝑣𝑛,𝑣𝑛−1,vn,vn−1, or 𝑣𝑛−2vn−2 will reduce the cycle connectivity of 𝐺G. Hence, 

𝑣𝑛,𝑣𝑛−1,vn,vn−1, and 𝑣𝑛−2vn−2 are cyclic cut nodes of 𝐺G. 

Theorem 3.1.7: For a complete fuzzy graph 𝐺G, 𝑘𝑐(𝐺)≤𝑘(𝐺)kc(G)≤k(G). 

Proof: Given a complete fuzzy graph 𝐺G with vertices 𝑣1,𝑣2,...,𝑣𝑛v1,v2,...,vn such that 

𝑑𝑠(𝑣1)≤𝑑𝑠(𝑣2)≤...≤𝑑𝑠(𝑣𝑛)ds(v1)≤ds(v2)≤...≤ds(vn). Let 𝑣1v1 be a vertex such that 𝑑𝑠(𝑣1)=𝛿𝑠(𝐺)ds(v1)=δs

(G). 

 

4. Conclusion 

The concept of connectivity plays a vital role in fuzzy graph theory, as it represents the relationships between 

the objects in a given set. Fuzzy graphs are particularly valuable in modeling real-time systems where the 

level of information varies with different levels of precision. 

In this paper, we have analyzed the criteria for the connectivity of a fuzzy graph. We have also explored 

cyclic vertex connectivity and cyclic edge connectivity, strong connected domination, and node connectivity 

in fuzzy graphs. These discussions provide a deeper understanding of how fuzzy graphs can be used to 

represent complex systems with varying levels of detail and accuracy, highlighting their applicability in 

diverse real-world scenarios. 
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