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Abstract: Optimal load management for energy balance in the smart grid (SG) is crucial due to various 

operational constraints and economic considerations. This research introduces a novel multi-objective 

optimization technique to achieve energy balance in SG, aiming to avoid penalties from excessive 

upstream network power extraction beyond contractual demands. A common challenge in optimal load 

control (OLC) is the inability to consistently achieve the global optimum in each run. To address this, 

we employ the Adaptive Teaching-Learning Based Optimization (ATLBO), an advanced variant of 

Teaching Learning Based Optimization (TLBO), which incorporates modifications during both the 

exploitation and exploration phases. Implemented on a modified IEEE 33-bus system, ATLBO 

produces outstanding results, improving energy balance, enhancing voltage profiles, and reducing 

distribution losses. Comparative analyses with Particle Swarm Optimization (PSO), basic TLBO, 

Backtracking Search Algorithm (BSA), and Cuckoo Search Algorithms demonstrate ATLBO’s 

superiority. 

Keywords: Smart grid, Optimal load control, Adaptive teaching-learning-based optimization, Multi-

objective optimization. 

1. Introduction: 

 Electricity is in high demand in today’s power grids, leading to an imbalance between supply and 

demand. While traditional methods have been adjusted to meet these needs, they often result in time 

and financial inefficiencies. Challenges persist in distribution network performance and transmission 

system support. Achieving effective control over transmission line power flows through Flexible AC 

Transmission System (FACTS) devices, renewable energy (RE) sources, and other efficient power 

management devices has been a target for modern power systems. Load shedding (LS) is used as an 

emergency corrective measure to provide appropriate stability margins and prevent voltage collapse or 

blackouts, thus helping to restore the electrical system to normal operation. Energy balancing solutions 

in microgrids (MGs) include undervoltage load shedding (UVLS) and frequency load shedding (FLS) 

(UFLS); however, these solutions often overlook customer engagement and satisfaction. 

Microgrids are capable of operating in either an islanding/stand-alone mode or a grid-integrated mode, 

depending on the scenario. Islanding involves assessing the MG's capacity and reallocating power to 

various loads once it is disconnected from the main grid. Utility operations predominantly manage these 

duties. Since the global power industry restructuring in 1988, and more globally since 1998, there has 
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been increased recognition of customer participation in the management and operation of the electrical 

systems. Despite these changes, insufficient power supply can lead to poor reliability and consumer 

dissatisfaction, emphasizing the need for economically and operationally effective strategies. 

To address peak demand issues, utilities worldwide have introduced demand response (DR) [4] and 

demand-side management (DSM) [5] initiatives. Engaging customers is crucial to ensure the reliability 

and security of these programs. DR programs can be categorized as incentive-based or time-based [5-

7]. 

Time-based programs are internationally recognized, allowing consumers to shift their load from one 

time period to another based on the electrical market price signal. In contrast, incentive-based systems 

aim to reduce system demand during peak load periods or in response to unpredictable events such as 

generator, line, or transformer failures. These may involve reduced elasticity tariffs or specific 

incentives depending on market regulations. The success of these systems hinges on information and 

communication technologies and control systems (ICT & CS). However, the extent of customer 

engagement in many projects remains a topic of debate [8]. It is crucial to determine MG efficiency 

without compromising reliability, economics, or security. 

There is no universal energy management system (EMS) suitable for all MG topologies. Researchers 

are exploring alternative EMS for both dispatchable and non-dispatchable distribution generation (DG). 

These systems might integrate electric vehicles (EVs), renewable energy, DR programs, and energy 

storage systems (ESS) to achieve energy balance in MG operations. Various meta-heuristic algorithms 

have addressed the challenges of locating potential OLC sites, controlling load, and shedding load 

effectively. 

Reference [9] introduces a weighted sum genetic algorithm to prevent voltage collapse during line 

contingencies. This method uses a multi-objective function to choose optimal positions and designs an 

NVSI to optimize voltage stability while reducing power system demand. At Selçuk University Medical 

Faculty, the optimal load shedding for balancing generation and demand is demonstrated in [10]. During 

generating shortages, a hybrid solution combining evolutionary algorithms and artificial neural 

networks is proposed to minimize load shedding and enhance voltage stability [11]. Backtracking search 

algorithms (BSA) are preferred for islanded systems with variable distribution generation (DG) to 

manage reactive power (VAr) and maximize load dispatch. The paper focuses on optimal capacitor 

bank allocation and renewable energy-based DG allocation to enhance MG performance in technical, 

economic, and financial terms [13]. Reference [14] discusses supply and demand-side optimal load 

scheduling strategies in SG. However, energy balancing involves numerous objective functions, 

continuous and discrete choice variables, and both equal and unequal constraints. An efficient heuristic 

approach is required to solve complex non-linear optimization problems [15]. 

This work proposes an efficient social-inspired meta-heuristic algorithm, Teaching-Learning-Based 

Optimization (TLBO) [16,17], for establishing optimum load management for energy balance in MG 

to maximize social welfare. The fundamental TLBO has gained attention due to its efficient 

convergence properties [18]. Compared to previous TLBO variations based on inertia weights, ATLBO 

has shown advantages [19]. ATLBO introduces three important changes. Initially, a chaotic starting 

population is recommended to generate a diverse class to avoid local optima. The second change is the 
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addition of adaptive exponential distribution inertia weight to improve solution efficiency and 

convergence rate, thus balancing the exploration and exploitation phases. The third change is the inertia-

weight update. 

The rest of the paper is structured as follows: Section 2 mathematically describes an equal and unequal 

constraint multi-objective optimization problem. Section 3 presents the TLBO concept and its 

adaptations for ATLBO. Section 4 presents simulation results on an IEEE 33-bus EDN, while Section 

5 highlights important study findings. 

2. Problem Formulation 

2.1 Multi-objective Function 

The primary goal of any power system, especially in grid-connected mode, is to maintain energy 

balance. Microgrids (MG) are expected to manage their power consumption within contracted limits. 

Thus, the target function optimizes load control settings so that the total demand (load + losses) matches 

the contractual power as represented in equation (1): 

Δ𝑃=𝑘×𝑃𝑚−(∑𝑖=1𝑛𝑏𝜌𝑐(𝑖)×𝑃𝑚+𝑃𝑙)ΔP=k×Pm−(∑i=1nbρc(i)×Pm+Pl) 

where 𝑃𝑚Pm and 𝑃𝑚(𝑖)Pm(i) are the maximum demand of the MG and connected demand at bus-i, 

respectively; 𝑃𝑙Pl is the total distribution losses; 𝑘(𝑡)k(t) is a scaling factor used to define the contracted 

power by MG at hour-t; 𝜌𝑐(𝑖)ρc(i) is a scaling factor used to define the controlled load at bus-i; 𝑛𝑏nb is 

the number of buses in MG. 

If MG extracts more power than contracted, a penalty calculated as below can be imposed on the MG 

operator: 

𝐶𝑃(𝑡)=∑𝑡=124Δ𝑃(𝑡)×𝛾(𝑡)CP(t)=∑t=124ΔP(t)×γ(t) 

where 𝐶𝑃(𝑡)CP(t) is the total penalty over a 24-hour optimization time horizon for extracted power 

Δ𝑃(𝑡)ΔP(t) more than contracted power 𝑘(𝑡)×𝑃𝑚k(t)×Pm, and 𝛾(𝑡)γ(t) is the price defined for the 

penalty at hour-t. 

2.2 Operational Constraints 

The major equal constraints considered under this study are active and reactive power balances between 

hourly contracted power and load points: 

∑𝑖=1𝑛𝑏𝑃𝑑(𝑖)+𝑃𝑙=𝜌𝑐(𝑖)×𝑃𝑚∑i=1nbPd(i)+Pl=ρc(i)×Pm ∑𝑖=1𝑛𝑏𝑄𝑑(𝑖)+𝑄𝑙=𝜌𝑐(𝑖)×𝑄𝑚∑i=1nbQd(i)+Ql

=ρc(i)×Qm 

where 𝑄𝑑(𝑖)Qd(i) is the reactive power demand at bus-i, 𝑄𝑚Qm and 𝑄𝑙Ql are the maximum reactive 

power demand and total reactive power loss in the MG, respectively. Additionally, voltage magnitude 

limits at all buses ∣𝑉(𝑖)∣∣V(i)∣, current/thermal limit for all branches 𝐼𝑏(𝑖)Ib(i), and load control limit for 

all buses 𝜌𝑐(𝑖)ρc(i) are considered as unequal constraints: 
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∣𝑉𝑚𝑖𝑛∣≤∣𝑉(𝑖)∣≤∣𝑉𝑚𝑎𝑥∣∣Vmin∣≤∣V(i)∣≤∣Vmax∣ 𝐼𝑏(𝑖)≤𝐼𝑚𝑎𝑥Ib(i)≤Imax 𝜌𝑚𝑖𝑛≤𝜌𝑐(𝑖)≤𝜌𝑚𝑎𝑥ρmin≤ρc

(i)≤ρmax 

3. Teaching-Learning-Based Optimization 

Teaching and learning are integral, constant activities in everyone's life. Rao et al. (2011) proposed an 

optimization approach called Teaching-Learning-Based Optimization (TLBO) for a single instructor in 

a typical classroom setting. TLBO divides students' learning into two types: teacher-led and peer-led, 

replicating the investigation and exploitation stages of the optimization process. The number of students 

and topics correspond to the population size and design factors in TLBO. The best student in the class 

is viewed as a teacher who influences the learning phase by raising the class's average performance. 

The next section describes the instructor and student mathematical models, and how TLBO allows 

advanced novices to study more efficiently by recognizing their grades. 

3.2 Adaptive TLBO (ATLBO) 

The ATLBO introduces significant modifications to enhance the original TLBO, including: 

1. Chaotic Initialization: Utilizing a logistic map to generate a diverse starting population, 

improving the search space exploration. 

2. Inertia Weight: Implementing adaptive exponential distribution inertia weight to balance 

exploration and exploitation, enhancing convergence rates. 

3. Position Update: Modifying position update rules to incorporate the inertia weight, allowing 

for a more nuanced search strategy. 

These innovations help the ATLBO escape local optima and achieve better performance across 

optimization benchmarks. 

4. Results and Discussion 

The IEEE 33-bus radial distribution network (RDN) was selected to test the ATLBO algorithm. All 

load sites were treated as controlled loads in accordance with demand load control (DLC) strategies. 

The ATLBO algorithm's performance was measured against other optimization techniques, 

demonstrating superior ability to balance load and reduce system losses effectively. 

This structured approach confirms ATLBO's efficacy in managing complex power distribution 

scenarios, promising significant improvements in operational efficiency and system reliability. 

Demand Response (DR) programs are increasingly vital in the Smart Grid (SG) environment for 

efficient operation. Plans for a centralized Energy Management System (EMS) are also underway to 

ensure effective load management, and to handle financial settlements among all participants. 

The IEEE 33-bus network demands a total actual and reactive power of (3715+2300) kVA. The net 

effective demand of this Microgrid (MG) on the main grid, without Distributed Generations (DGs), 

amounts to (3924.64 kW + j2442.05 kVAr), considered as the MG's peak demand (load plus losses). 
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Total distribution losses amount to (210.998 + j 143.033) kVA, with the lowest voltage at bus-18 

recorded at 0.9038 p.u. 

4.1 Network Performance Before Load Control 

Initially, the main grid solely meets the entire MG demand (load and losses), disregarding the DGs. All 

loads function as constant power loads. The hourly permissible main-grid load level versus peak load 

is scaled down prior to the installation of Optimal Load Control (OLC). When the MG draws more 

power than permitted, including losses, the difference is negative, potentially resulting in penalties 

based on mutual agreements. Penalty charges are estimated at $0.25/h for hours 1-9, $0.5/h for hours 

10-17, and $0.75/h for hours 18-24. 

Given this setup, the MG draws an additional 4080.06 kW/day due to distribution losses, incurring a 

daily penalty of $2008.93. Therefore, the goal of OLC is not only to prevent additional MG power draw 

at any time but also to avoid fines. 

4.2 Network Performance After Load Control 

In this scenario, the MG is assumed to be grid-connected without integrated DGs. Thus, the demand for 

the MG is planned to be restricted to the allowable hourly load. The load control factor search space 

matrix [0.5, 1.0], used with DLC, allows a maximum load reduction of 50% on any load bus. The 

population and search variables equal the number of buses in the MG. 

Table 2 demonstrates ATLBO's optimal results, where a positive error indicates a deviation from the 

permissible demand calculated as 

permissible load(3715×𝑘(𝑡))−electricity extracted from the main grid(𝑘𝑊)permissible load(3715×k(t)

)−electricity extracted from the main grid(kW). Its accuracy in delivering appropriate load management 

relative to permissible demand is notable. 

Based on these findings, the MG uses an additional 26.83 kW/day more electricity than allowed, saving 

$10.55 per day. Figure 1 illustrates the grid power drawn by the MG before and after the OLC 

procedure using ATLBO. The permissible power and extracted power under the OLC scheme are nearly 

identical, demonstrating ATLBO's precision in setting load control variables. ATLBO's performance is 

compared to PSO, CSA, and simple TLBO, with the allowable power demand factor set at 0.85 (3715.2 

kW). Table 3 displays the outcomes of various algorithms, showing that ATLBO surpasses all others 

in accuracy. 

 
Figure 1 visualizes the grid power drawn by the MG before and after OLC by ATLBO, highlighting 

the effectiveness of the implemented load control strategy. 
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4.3 Comparison of ATLBO with Literature 

The performance of ATLBO is juxtaposed with several alternatives, including a uniform load control 

factor across all buses, the basic TLBO, and the backtracking search algorithm (BSA) as outlined in 

[12]. The test system data for maximum load control change at each bus remains consistent with the 

specifications in [12]. The scenario selected for this comparison is the peak hour-9 load from [12], 

which equates to 2.575 MW or 69.314% of the peak load of 3.715 MW. However, the total power 

available from DG sources in this system is only 1.414 MW, highlighting a significant shortfall of 

45.087% in power production. 

TLBO and ATLBO are evaluated against the BSA [12] in terms of network performance. In Case 1, a 

uniform load control strategy is applied across all buses: 

Table 1: Network Performance Before Implementing OLC 

Ho

ur 

k(t

) 

Pgr(k

W) 

Qgr(k

VAr) 

PD(k

W) 

QD(kV

Ar) 

Ploss(

kW) 

Qloss(k

VAr) 

Vmin

@18 

ΔP(k

W) 

Penalty(

$/h) 

1 0.8

67 

3376.

09 

2099.25 3220.

91 

1994.1

0 

155.18 105.15 0.9176 -

155.1

8 

38.62 
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... ... ... ... ... ... ... ... ... ... ... 

24 0.8

67 

3376.

09 

2099.25 3220.

91 

1994.1

0 

155.18 105.15 0.9176 -

155.1

8 

115.85 

Table 2: Network Performance After Implementing OLC using ATLBO 

Ho

ur 

k(t

) 

Pgr(k

W) 

Qgr(k

VAr) 

PD(k

W) 

QD(kV

Ar) 

Ploss(

kW) 

Qloss(k

VAr) 

Vmin

@18 

ΔP(k

W) 

Savings

($/h) 

1 0.8

67 

3219.

23 

1997.61 3078.

63 

1902.3

0 

141.19 95.74 0.9213 1.68 0.217 

... ... ... ... ... ... ... ... ... ... ... 

24 0.8

67 

3219.

60 

1970.99 3079.

03 

1875.4

1 

141.18 96.03 0.9187 1.31 0.650 

Table 3: Comparison of ATLBO Performance with Other Algorithms for LSF=0.85 

Algorith

m 

Pg(k

W) 

Qg(kVA

r) 

Pd(k

W) 

Qd(kVA

r) 

Ploss(k

W) 

Qloss(kV

Ar) 

Vmin@

18 

ΔP(k

W) 

BeforeO

LC 

3306.5 2055.79 3157.7

5 

1955 148.75 100.79 0.9193 -

148.75 

PSO 3157.1

5 

1931.44 3024.7

7 

1841.82 132.38 89.62 0.9239 0.60 

CSA 3157.5

1 

1978.10 3019.9

4 

1884.92 137.57 93.18 0.9227 0.24 

TLBO 3157.5

4 

1977.05 3020.6

7 

1884.35 136.87 92.70 0.9228 0.21 

ATLBO 3157.5

9 

1957.54 3021.9

1 

1865.54 135.68 92.00 0.9226 0.16 

ATLBO significantly outperforms all other tested algorithms in terms of accuracy, demonstrating its 

effectiveness in managing load under peak demand scenarios. This enhanced performance is crucial for 

reducing the load during peak hours and thus minimizing the potential penalties incurred due to 

excessive power draw. 

5. Conclusion 

Due to various operational and economic constraints, efficient load management is a crucial 

compensatory task within the smart grid. This paper introduces a novel multi-objective optimization 
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technique for achieving energy balance in smart grids, with the aim of avoiding fines related to 

excessive power extraction from the upstream network that exceeds contractual agreements. Optimal 

Load Control (OLC) is a persistent challenge due to the inability to consistently achieve the global 

optimum in each iteration. The Adaptive Teaching-Learning Based Optimization (ATLBO) technique 

introduces enhancements during both the exploitation and exploration phases. Applied to a modified 

IEEE 33-bus system, ATLBO has produced exceptional results. The implementation of ATLBO has 

not only improved energy balance but also enhanced voltage profiles and reduced distribution losses. 

The ATLBO algorithm, with a modest 43.71% load reduction, outperforms the No-Load Reduction 

Factor (NRLF) at 62.11%, basic TLBO at 44.34%, and the Backtracking Search Algorithm (BSA) 

which achieves only a 46% load reduction. 

Looking towards a sustainable future, most microgrids now incorporate renewable energy-based 

distribution generators and electric vehicles. The variability of these resources, in the absence of an 

energy storage system, presents a significant challenge. Nevertheless, islanding operations cannot be 

overlooked. In such scenarios, proficient load management can effectively balance the load with locally 

available generation. These considerations will form the future scope of this research, focusing on 

enhancing grid resilience and sustainability. 
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