
 

S.Subashchandar. Copyright @ www.ijrmmae.in 14 

 

Jupiter Publications Consortium 
 
Vol. 2 Iss.2, pp. 14-17,  24th Sep, 2016 
ISSN Print     : 2454-1435 © 2016 IJRMMAE 
ISSN Online : 2454-1443 © 2016 IJRMMAE 
http://www.ijrmmae.in 

International Journal of Research in 
Mechanical, Mechatronics and 
Automobile Engineering (IJRMMAE) 

CASE STUDY OF TOPOLOGICAL 
SORTING IN CASE OF DIRECTED 

ACYCLIC GRAPH 
Dr. N Guruprasad, Dr. Vishwanath Y,  

Associate Professor, Information Science and Engineering Department,  
New Horizon College of Engineering, Bangalore, India, 

guruprasadn@newhorizonindia.edu 

Gangadhar Immadi, Asha Rani Borah, Asha Rani Borah 
 

Assistant Professor,  Information Science and Engineering Department,  
New Horizon College of Engineering, Bangalore, India, 

gangadhari@newhorizonindia.edu  
Received 09, September 2016 | Accepted 24, September 2016 

 
ABSTRACT 

 

Often a complex project may be decomposed into a collection of simpler tasks with the 
property that the completion of these tasks implies that the project has been completed. A 

precedence relationship exists between certain pair of tasks. The set of tasks together with 

the precedence’s may be represented as a digraph. Topological sorting for Directed Acyclic 

Graph (DAG) is a linear ordering of vertices such that for every directed edge uv, vertex u 

comes before v in the ordering. Topological Sorting for a graph is not possible if the graph is 
not a DAG.In this paper we make an attempt to study the topological sorting on a specific 

digraph by making use of queue as a data structure. 

 

Keywords: Directed Acyclic Graph, Linear ordering, Precedence relationship, queue, 

topological sorting 

 
I. INTRODUCTION 

 

In the field of computer science, a topological sort (sometimes abbreviated toposort) or 

topological ordering of a directed graph is a linear ordering of its vertices such that for every 

directed edge uv from vertex u to vertex v, u comes before v in the ordering [1]. For 

instance, the vertices of the graph may represent tasks to be performed, and the edges may 
represent constraints that one task must be performed before another; in this application, a 

topological ordering is just a valid sequence for the tasks[3]. A topological ordering is 

possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic 

graph (DAG)[4]. Any DAG has at least one topological ordering, and algorithms are known 

for constructing a topological ordering of any DAG in linear time[5]. 
 

II. APPLICATION 

 

The canonical application of topological sorting (topological order) is in scheduling a 

sequence of jobs or tasks based on their dependencies; topological sorting algorithms were 

first studied in the early 1960s in the context of the PERT technique for scheduling in 
project management) [2]. The jobs are represented by vertices, and there is an edge from xto 

y if job x must be completed before job y can be started (for example, when washing clothes, 

the washing machine must finish before we put the clothes to dry). Then, a topological sort 

gives an order in which to perform the jobs. 

 
In computer science, applications of this type arise in instruction scheduling, ordering of 

formula cell evaluation when re-computing formula values in spreadsheets, logic synthesis, 

determining the order of compilation tasks to perform in makefiles, data serialization, and 
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resolving symbol dependencies in linkers. It is also used to decide in which order to load 

tables with foreign keys in databases. 

 
III. COMPLEXITY 

 

The computational complexity of the problem of computing a topological ordering of a 

directed acyclic graph is NC2; that is, it can be computed in O(log2n) time on a parallel 

computer using a polynomial number O(nk) of processors, for some constant k. One method 

for doing this is to repeatedly square the adjacency matrix of the given graph, 
logarithmically many times, using min-plus matrix multiplication with maximization in 

place of minimization. The resulting matrix describes the longest path distances in the 

graph. Sorting the vertices by the lengths of their longest incoming paths produces a 

topological ordering. 

 
IV. UNIQUENESS 

 

If a topological sort has the property that all pairs of consecutive vertices in the sorted order 

are connected by edges, then these edges form a directed Hamiltonian path in the DAG. If a 

Hamiltonian path exists, the topological sort order is unique; no other order respects the 

edges of the path. Conversely, if a topological sort does not form a Hamiltonian path, the 
DAG will have two or more valid topological orderings, for in this case it is always possible 

to form a second valid ordering by swapping two consecutive vertices that are not connected 

by an edge to each other. Therefore, it is possible to test in linear time whether a unique 

ordering exists, and whether a Hamiltonian path exists, despite the NP-Hardness of the 

Hamiltonian path problem for more general directed graphs  
 

Consider the following graph: 

 
 

Algorithm: 

 

1) Find the indegreeINDEG(N) of each node N of G. 
2) Put in a queue all the nodes with zero indegree. 

3) Repeat steps 4 and 5 until the queue is empty. 

4) Remove the front node N of the queue by setting FRONT := FRONT+1. 

5) Repeat the following for each neighbour M of node N : 

 a) Set INDEG(M) := INDEG(M)-1 
  [ This deleted edge from N to M ] 

 b) If INDEG(M)=0 then : add M to rear of queue 

 [ End of loop ] 

 [ End of step 3 loop ]  

6) Exit. 

 
Adjacency List of the above graph is as follows: 

A: C 

B: D, F 
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C: 

D: C 

E: C 
F: 

G: A, F 

 

The step of the algorithm is depicted below: 

 

1) Find the in-degree of all the nodes N of the graph. 
 INDEG(A)=1 INDEG(B)=0 INDEG(C)=3 INDEG(D)=1 

 INDEG(E)=0 INDEG(F)=2 INDEG(G)=0 

 

2) Initially add to the queue each node with zero in-degree. 

 
 FRONT = 1 REAR = 3  QUEUE : B   E   G 

 

3a) Remove front element B from queue by setting FRONT:=FRONT+1 

 

 FRONT = 2 REAR = 3  QUEUE : B   E   G 

 
 

3b) Decrease by 1 the in-degree of each neighbour of B 

 

 INDEG(D)=1-1=0   INDEG(F)=2-1=1 

 
The neighbour D is added to the rear of the queue since its in-degree is now zero. 

 

 FRONT = 2 REAR = 4  QUEUE : B   E   G   D 

 

4a) Remove front element E from queue by setting FRONT:=FRONT+1 

 
 FRONT = 3 REAR = 4  QUEUE : B   E   G    D 

 

4b) Decrease by 1 the in-degree of each neighbour of E 

 

 INDEG(C)=3-1=2 
 

Since in-degree is non zero, QUEUE is not changed.  

 

5a) Remove front element G from queue by setting FRONT:=FRONT+1 

 

 FRONT = 4 REAR = 4  QUEUE : B   E   G   D 
 

5b) Decrease by 1 the in-degree of each neighbour of G 

 

 INDEG(A)=1-1=0   INDEG(F)=1-1=0 

 
Both A and F are added to the rear of the queue as follows: 

 

 FRONT = 4 REAR = 6  QUEUE : B   E   G   D  A   F 

 

6a) Remove front element D from queue by setting FRONT:=FRONT+1 

 
 FRONT = 5 REAR = 6  QUEUE : B   E   G    D  A  F 

 

6b) Decrease by 1 the in-degree of each neighbour of D 

 

 INDEG(C)=2-1=1 
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Since in-degree is non zero, QUEUE is not changed. The graph G now looks like below 

where node D and its edge is deleted. 

 
7a) Remove front element A from queue by setting FRONT:=FRONT+1 

 

 FRONT = 6 REAR = 6  QUEUE : B   E   G    D  A  F 

 

7b) Decrease by 1 the in-degree of each neighbour of A 

 
 INDEG(C)=1-1=0 

 

Add C to the rear of the queue since its in-degree is now zero. 

 

FRONT = 6 REAR = 7   QUEUE : B   E   G    D  A  F   C 
 

8a) Remove front element F from queue by setting FRONT:=FRONT+1 

 

FRONT = 7 REAR = 7   QUEUE : B   E   G    D  A  F   C 

 

8b) Node F has no neighbours, so no change takes place.  
 

9a) Remove front element C from queue by setting FRONT:=FRONT+1 

 

FRONT = 8 REAR = 7  QUEUE : B   E   G    D  A  F   C 

 
8b) Node C has no neighbours, so no change takes place.  

 

The queue has no front element, hence the algorithm is completed. The elements in the 

array QUEUE gives the required topological sort T of graph G which is as follows: 

 

 T: B   E   G    D   A    F   C 
 

 

V. CONCLUSION 

 

In this paper we made use of queues as data structure for understanding topological 
sorting. Further it can be solved by making use of recursive call in stacks.  
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