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1. ABSTRACT 
 

Generally, Job Shop Scheduling Problem (JSSP) is an operational sequencing problem to process n jobs on m 

machines in a given sequence so as to optimally utilize the resources by complete processing of all jobs in a 

minimum possible  

time. JSSP has belongs to the category of NP hard problems where the search space of the problem is (n!) 
m

. 

Several naturally inspired evolutionary techniques / methods have recently been developed to address these 
problems to get near optimal solutions in a reasonable time period thus several unsolved / difficulty to solve 
JSSPs became target for many researchers. 

 
Some Traditional Optimization Techniques includes Priority Dispatch Rules, Efficient Methods solvable in 

polynomial times. Enumerative methods and Mathematical formulation like Linear Programming, Mixed Linear 

Programming, Lagrangian Relaxation, Branch and Bound and Disjunctive Graph techniques etc. the research has 

been accelerated with applications of Nontraditional Techniques. Application of Artificial Intelligence, insertion 

Algorithms, Bottleneck Heuristics, Neural Networks, Expert Systems and Local Search algorithms. Application 

of Evolutionary Algorithms for scheduling found from mid 80s to till date. Genetic Algorithm, Variation in GAs, 

PSO, ACO, BCO, Memetic Algorithm, Immune Algorithm and several Hybrid Algorithms. The BFO algorithms, 

HS algorithms, IWO have been found applied in JSSP in the recent years.  
More focus on the application of Non Traditional methods for JSSP is increasing compared to 

traditional techniques. For the same cost and time non traditional methods yield better solutions compared to 

traditional methods.  
Hence, in this paper classical evolutionary algorithms namely Invasive weed optimization (IWO), 

Bacterial Foraging Optimization (BFO) and Music Based Harmony Search principles and fine-tuned the 

mechanisms to model and solve JSSP. Several Bench Mark instances available in OR library were thoroughly 

tested to prove the efficiency of the proposed methods by selective and random generation of populations. 
 

Two different types of population generations were considered 

 
i) Random Population (RP): The initial population is randomly generated and applied to the algorithm 

procedures and let us call such methods as PSO with RP, HSPO with RP, AIA with RP, HAIA with RP, 

MBHS with RP,  

 IMBHS with RP, BFO and IWO with RP. 
 

ii) Selective Population: The initial Populations are generated using   priority dispatching   rules. A priority 
 

 dispatching rule is a simple mathematical formula that, based on some processing parameters, specifies the priority 
 

 of operations to be executed. 10 initial schedules i.e., populations are generated using 10 commonly used priority 
 

 dispatching rules given in the Table 1 let us call these methods as PSO with SP, HSPO with SP, AIA with SP, 
 

 

HAIA with SP, MBHS with SP, IMBHS with SP, BFO with SP and IWO with SP. 
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 EXPRESSION   DESCRIPTION 
 

    

 

 

 Shortest Processing Time (SPT)  The job with shortest time on machines selected. 
 

     pi≤ pi+1≤ pi+2≤…………….≤ pn  
 

       

 Longest Processing Time(LPT)   The job with longest time on machines selected.  
 

     pi≥ pi+1≥ pi+2≥…………….≥ pn  
 

        

 Minimum Slack   Time Per  Time remaining until the due date – Processing time  
 

 Operation(MINSOP)   Remaining  
 

      
 

 Minimum Due Date(MINDD)   The job with earliest due date is processed first  
 

     Di≤ Di+1≤ Di+2≤…………….≤ Dn  
 

       

 Critical Ratio(CR)   Remaining due date/Remaining processing time  
 

      
 

        

 Most work remaining (MWKR) Select the operation associated with the job of the   

    most work remaining to be processed   
     

 Least work remaining(LWKR) Select the operation associated with the job of the   

    least work remaining to be processed   
       

 Shortest remaining Minimum Min(processing tine remaining- minimum processing   

 Processing Time(SRMPT) time)   
       

 Longest remaining Maximum Max(processing tine remaining- maximum processing   

 Processing Time(LRMPT) time)   
     

 RANDOM(random selection) Select the next job to be processed randomly.    
Table.1: List of common Priority Dispatching rules used to generate the initial population. 

 
The coding of these algorithms is done in MATLAB, optimized by speed, and run on Intel Core2Duo T6400 

@ 2.00GHz and each algorithm was made to run 30 times on each problem of 250 Bench Mark Problem 

Instances. In this chapter the results obtained by executing the above algorithm on 250 Bench Marking 

Problems are reported only. 
 

2. BENCHMARKPROBLEMS  
To find the comparative merits of the various techniques and algorithms, one needs to test on the 

bench mark problems. These benchmark problems are formulated by various authors, Fisher and Thompson, 

1963 (FT) 3 problems of 3 different sizes: 6×6, 10×10, 20×5; Lawrence, 1984 (LA) 40 problems of 8 

different sizes: 10×5, 15×5, 20×5, 10×10, 15×10, 20×10, 30×10 and 15×15; Adams Balas & Zawak, 1988 

(ABZ) 5 problems of 2 different sizes: 10×10, 20×15; Applegate and Cook, 1991 (ORB) 10 problems of 

10×10 size; Storer, Vaccari & Wu, 1992 (SWV) 20 problems of 3 different sizes: 20×10 , 20×15, 50×10; 

Yamada and Nakano, 1992 (YN) 4 problems of 20×20 size; Taillard, 1993 (TA) 80 problems of 8 different 

sizes: 15×15, 20×15, 20×20, 30×15, 30×20, 50×15, 50×20; Demirkol, Mehta & Uzsoy, 1998 (DMU) 80 

problems of 8 different sizes: 20×15, 20×20, 30×15, 30×20, 50×15, 50×20, 100×20; Jacques Carlier , (CAR) 

8 problems of 8 different sizes: 11×5, 13×4, 12×5, 14×4, 10×6, 8×9, 7×7, 8×8; and are freely available. In this 

paper all the known 250 benchmark problems of JSSP have been taken into consideration for testing with the 

algorithms being developed. 
 

3. ALGORITHMS DEVELOPED 
 

3.1. Particle Swarm optimization (PSO) Algorithm  
One of the best evolutionary techniques for unconstrained continuous optimization is particle swarm 

optimization (PSO) proposed by Kennedy and Eberhart (1995), inspired by social behavior of bird flocking or 

fish schooling. PSO has been successfully used in different fields due to its ease of implementation and 

computational efficiency. Particles move toward the pbest position and gbest position with each iteration. The 

pbest position is the best position found by each particle so far. The gbest position is the best position found by 

the swarm so far. The particle moves itself according to its velocity. For each particle k and dimension j, the 

velocity and position of particles can be updated by the following equations: 
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Figure.1 Flowchart for Particle Swarm Optimization 
 
 

3.2. Hybrid Particle Swarm Optimization (HPSO) Algorithm  
PSO is a stochastic search algorithm; it is prone to inadequate global search-ability at the end of a run. 

PSO may fail to find the required optima in cases when the problem to be solved is too complicated and complex. 

The original PSO was designed for a continuous solution space. Simulated Annealing (SA) has certain 

probability to avoid becoming trapped in a local optimum and the search process can be controlled by the cooling 

schedule. By reasonably combining these two different search algorithms, we develop a general, fast and easily 

implemented hybrid optimization algorithm called HPSO, it can be seen that PSO provides initial solution for SA 

during the hybrid search process. Moreover, such HPSO can be applied to many combinatorial optimization 

problems by simple modification. The psedudo code of HPSO is given on Figure.2. 

 
3.3. Artificial Immune Algorithm (AIA) 

Artificial Immune Systems are adaptive systems applied to problem solving which have been derived 
from the principles, models and functions of the human immune system. The field of AIS was initially developed 

in 1986 by J. D. Farmer et al. in their paper called ‘The Immune System, Adaptation and Machine Learning’ and 

was followed by another paper by G.W. Hoffman called ‘A Neural Network Model Based on the Analogy with 

the Immune System’. Artificial Immune Model is, a basic model with understanding of the Functioning of the 

human immune system is essential. The human immune system is characterized by its adaptive and robust nature. 

In Equations (3.1) and (3.2), is the velocity of the particle k on dimension j, and is the position of particle k on 

dimension j. The is the pbest position of particle k on dimension j, and  is the gbest position of the swarm 

on dimension j. The inertia weight w is used to control exploration and exploitation. The particles maintain high 
velocities with a larger w, and low velocities with a smaller w. The constants   and are used to decide whether particles 

prefer moving toward a pbest position or gbest position. The and are random variables between 0 and 1. The 

process of working of PSO and its flow chart is shown in Figure.1.    



P a g e  | 78 

 

This can be observed by considering a simple example of an infection attacking the body. The infection (or 
antigen) attacking the body is countered by the defence mechanism called the antibody. The artificial immune 

system was built on the following two principles of the immune system.  
i. Clonal selection principle  

ii. Affinity maturation principle   
i. Clonal selection principle  

Each schedule (antibody) has a makespan value that refers to the affinity value of that antibody. Affinity 

value of each schedule is calculated from the affinity function. The affinity function is defined as  
Affinity (p) = 1/makespan 

 
From this relation, a lower makespan value gives a higher affinity value. Further the cloning of antibodies is done 

directly proportional to their affinity function values. Therefore, there will be more clones of antibodies that have 

lower makespan values than those with higher makespan values in the new generated clone population. An 

affinity function is defined based on makespan values of the schedules. Also they have given a function to 

calculate the number of clones that would be proliferated. 

 
ii. Affinity maturation principle 

The affinity maturation principle consists of a method namely mutation. 

Mutation: A two phased mutation procedure were used for the generated clones.  
a. Inverse mutation  

    b.  Pair wise interchange mutation  
  

a. Inverse mutation: For a sequence s, let i and j be randomly selected two positions in the sequences. A 

neighbour of s is obtained by inversing the sequence of jobs between i and j positions. If the makespan value of 

the mutated sequence (after inverse mutation) is smaller than that of the original sequence (a generated clone 

from an antibody), then the mutated one is stored in the place of the original one. Otherwise, the sequence will 
be mutated again with random pair wise interchange mutation.  

b. Pair wise interchange mutation: Given a sequence s, let i and j be randomly selected two positions in the 

sequence s. A neighbour of s is obtained by interchanging the jobs in positions i and j. If the makespan value of 

the mutated sequence (after pair wise interchange mutation) is smaller than that of the original sequence, then 

store the mutated one in the place of the original one. In the case where the algorithm could not find a better 

sequence after the two-mutation procedure, then it stores the original sequence (generated clone).   
Figure.3 is the flowchart and gives the pseudo code of AIS algorithm for solving the job shop scheduling 

problem. The possible schedules are represented by integer-valued sequences of length n (jobs). The n 

elements of the strings are the jobs which will be sequenced. Therefore, the strings are composed of 

permutations of n (jobs) elements. Those strings are accepted as antibodies of the AIS. The algorithm goes up 

to solution by the evolution of these antibodies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 3. Flow chart of artificial immune system algorithm 
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3.4. Hybrid Artificial Immune Algorithm (HAIA)  
The hybrid algorithm based on AIS theory and PSO is described for the JSSP. Hybrid Artificial 

Immune Algorithm adopts the antigens for finding optimum solutions efficiently. In this case antigen is a 

potential solution and the algorithm helps the antigens to evolve and generate better population thus giving rise 

to fitter antigens which represent competitive schedules.  
To implement a basic artificial immune system, four decisions have to be made: encoding, similarity measure, 

selection and mutation. Once an encoding has been fixed and a suitable similarity measure is chosen, the 

algorithm will then perform selection and mutation, both based on the similarity measure, until stopping 

criteria are met. The pseudo code showing the main procedures of the algorithm is shown in Figure.4 To 

accelerate the convergence speed of the search algorithm, a neighbourhood search mechanism is formulated 

especially for this problem 
 

3.5. Invasive Weed Optimization (IWO) Algorithm  
Invasive weed optimization (IWO), first designed and developed by Mehrabian and Lucas (2006), is a 

relatively novel numerical stochastic optimization algorithm inspired from colonization of invasive weeds. The 

algorithm is simple but has shown to be effective in converging to optimal solution by employing basic properties, 

e.g. seeding, growth and competition, in a weed colony. A weed is any plant growing where it is not wanted; 

any tree, vine, shrub or herb may qualify as a weed, in any specified geographical area, depending on the 

situation. Weeds have shown a very robust and adaptive nature that renders them undesirable plants in 

agriculture. 

  
In D-dimensional search space, a weed which represents a potential solution of the objective function is 

represented by W = (w1, w2,·· , wm) . Firstly, M weeds, called a population of plants, are initialized with 

random growth position, and then each weed produces seeds depending on its fitness and the colony's lowest 

fitness and highest fitness to simulate the natural survival of the fittest process. The number of seeds each plant 

produce increases linearly from minimum possible seed production to its maximum. The generated seeds are 

being distribution randomly in the search area by normal distribution with mean equal to zero and a variance 

parameter decreasing over the number of iterations. By setting the mean equal to zero, the seeds are distributed 

randomly such that they locate near to the parent plant and by decreasing the variance over time, the fitter 

plants are grouped together and inappropriate plants are eliminated over times. 
 

3.6. Bacterial Foraging Optimization (BFO) Algorithm  
Bacterial Foraging Optimization (BFO) was first introduced by Passino inspired from the Swarm 

Intelligence. Bacteria search for nutrients in a manner to maximize energy obtained per unit time. Individual 

bacterium also communicates with others by sending signals. A bacterium takes foraging decisions after 

considering two previous factors. The process, in which a bacterium moves by taking small steps while 

searching for nutrients, is called chemotaxis and key idea of BFOA is mimicking chemotactic movement of 

virtual bacteria in the problem search space. During foraging of the real bacteria, locomotion is achieved by a 

set of tensile flagella. Flagella help an E.coli bacterium to tumble or swim, which are two basic operations 

performed by a bacterium at the time of foraging. When they rotate the flagella in the clockwise direction, 

each flagellum pulls on the cell. That results in the moving of flagella independently and finally the bacterium 

tumbles with lesser number of tumbling whereas in a harmful place it tumbles frequently to find a nutrient 

gradient. Moving the flagella in the counter clockwise direction helps the bacterium to swim at a very fast rate. 

In the above- mentioned algorithm the bacteria undergoes chemotaxis, where they like to move towards a 

nutrient gradient and avoid noxious environment. Generally the bacteria move for a longer distance in a 

friendly environment.  
Let us define a chemotactic step to be a tumble followed by a tumble or a tumble followed by a run. 

Let j be the index for the chemotactic step. Let k be the index for the reproduction step. Let l be the index of 

the elimination-dispersal event.  
Also let P ( j, k, l) { ( j, k, l) | i 1,2,..., S} i = q = represent the position of each member in the 

population of the S bacteria at the j-th chemotactic step, k-th reproduction step, and l-th elimination-dispersal 

event. Here, let J (i, j, k, l) denote the cost at the location of the i-th bacterium i. Note that we will 

interchangeably refer to J as being a “cost” (using terminology from optimization theory) and as being a 

nutrient surface (in reference to the biological connections). For actual bacterial populations, S can be very 

large (e.g., S =109), but p = 3. In our computer simulations, we will use much smaller population sizes and will 

keep the population size fixed. BFOA, however, allows p > 3 so that we can apply the method to higher 

dimensional optimization problems. The whole process is depicted in Figures.6. 
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